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Abstract
Rules are developed for a new kind of topologically unavoidable branch
crossing in the band structure of solids. It is proved that there exists a great
variety of four-branch energy bands in crystalline solids of the orthorhombic
system in which the crossings are necessitated by symmetry and topology.
These crossings are different from conventional degeneracies that follow from
space group symmetry alone, and they can take place on either points or lines
in the Brillouin zone.

PACS numbers: 71.28.+d, 02.20.Fh, 02.40.Pc

Symmetry labelling of eigenfunctions and energies in the band structure of solids was
introduced in a famous paper by Bouckaert, Smoluchowski and Wigner (BSW) [1]. They
used symmetry points in k-space and the irreducible representations of their symmetry groups
Gk for this labelling. This approach reflects the local symmetry of the extended Bloch
functions at the symmetry points and their vicinity in the Brillouin zone. As is well known,
Bloch functions can be built from atomic-like functions or Wannier functions [2], which are
localized in configuration space and carry the full information of the Bloch functions but are not
eigenfunctions of the problem. The symmetry properties of Wannier functions were dealt with
by Burneika and Levinson [3], des Cloizeaux [4], Kovalev [5] and later Zak [6] who defined
the concept of band representations of space groups. Unlike conventional representations
which give locally the symmetry in k-space, band representations carry symmetry labels of the
entire energy bands and enable one to have a global look at them. One distinguishes between
simple energy bands with a single branch (having one Bloch function at each �k-vector in the
Brillouin zone), and composite ones with more than one branch (two, or more than one, Bloch
function at each �k). When at a given �k in the Brillouin zone there are d Bloch functions (d > 1)

with the same energy, we have a d-fold degeneracy at this �k. BSW [1] have carried out an
analysis of degeneracies in energy bands based on irreducible representations of space groups.
Following this analysis, Herring [7] has raised the possibility of the appearance of accidental
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degeneracy which may follow from symmetry and continuity of the energy as a function of
�k in the Brillouin zone. The main feature of accidental degeneracy is that it can be removed
by changing the potential of the crystal, while keeping the symmetry unchanged. Based on
the notion of band representations, it was recently shown that in some crystals with four-
branch composite energy bands a special kind of degeneracy exists which is a consequence of
symmetry and continuity, and for which the location in k-space of the degeneracy point can
be moved by changing the potential, but it cannot be removed as long as the symmetry of the
crystal is kept unchanged [8].

In this paper we establish rules for the existence of topologically unavoidable points and
lines of branch crossings in the band structure of solids. A point of a crossing is obtained when
two energy branches ε1 and ε2 assume the same energy at some given point in the Brillouin zone.
When this happens on a whole line, then we have a line of crossing for two energy surfaces.
These rules are established for a great variety of crystals with orthorhombic symmetry. The
main tool for establishing these rules is the notion of elementary band representations [9], a
classification of which was given in [10]. An additional tool is the compatibility relations
[1] when applied on a global scale of entire energy bands or the so-called continuity chords
(see item 2 in [6]). At the centre of the Brillouin zone, �k = 0 (the �-point) all irreducible
representations of orthorhombic space groups are one dimensional (because the point groups
for these space groups are Abelian [1, 11]). On the other hand, on the surface of the Brillouin
zone there are always symmetry points at which all the irreducible representations (irreps)
or co-representations of orthorhombic space groups are of dimensionality two or higher
(time-reversal included). With these facts in mind it will be shown that there are numerous
orthorhombic space groups for which branch crossings are unavoidable by symmetry and
topology.

The idea we are going to use for proving the rules for topologically unavoidable crossings
in orthorhombic crystals is as follows: let us start with a short description of background
material. An elementary energy band which corresponds to an elementary band representation
[9] has a number of branches b( �w, ρ) given by the formula ( �w is a maximal symmetry Wyckoff
position [12], and ρ specifies an irreducible representation D( �w,ρ) of the symmetry group Gw

of �w):

b( �w, ρ) = [
dim D( �w,ρ)

] |P |
|Gw| (1)

where [dim D( �w,ρ)] is the dimension of the irreducible representation D( �w,ρ) of Gw and |P |
and |Gw| are the number of elements of the groups P (the point group of the space group
of the solid) and Gw . The label ( �w, ρ) specifies the band representation in question, which
is an induced representation of the space group G induced from D( �w,ρ) of Gw . Being an
induced representation from a finite-order subgroup Gw, the band representation ( �w, ρ) is
infinite dimensional and covers the infinite set of functions belonging to the corresponding
energy band. By reducing the band representation ( �w, ρ), one can find its content in
irreducible representations of the space group G at each point �k in the Brillouin zone. It
is, in particular, easy to find this content at the point � in the centre �k = 0 of the Brillouin
zone [6]. For this, one just has to find the representations of the point group P which are
induced from the representation ρ of the symmetry group Gw . For orthorhombic space groups
their point groups P are all Abelian and therefore their irreducible representations will all
be one dimensional at the �-point. As was mentioned above, for all orthorhombic space
groups, on the surface of the Brillouin zone there are always symmetry points at which all
irreducible representations (including co-representations) are of dimension two or higher [13].
For checking whether a crossing of two branches appears we are going to follow pairs of
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Table 1. Irreducible representations of the point group D2h. The Ux is a rotation by π around the
x-axis (respectively, y and z-axes), the σx is a reflection in the plane perpendicular to x (respectively,
y and z). I is the inversion.

D2h − mmm E Ux Uy Uz σx σy σ z I

1 1 1 1 1 1 1 1 1
2 1 1 −1 −1 1 −1 −1 1
3 1 −1 1 −1 −1 1 −1 1
4 1 −1 −1 1 −1 −1 1 1
5 1 1 1 1 −1 −1 −1 −1
6 1 1 −1 −1 −1 1 1 −1
7 1 −1 1 −1 1 −1 1 −1
8 1 −1 −1 1 1 1 −1 −1

one-dimensional representations for a given elementary energy band that initiate at the �-
point as two separate one-dimensional representations and end up at symmetry points on the
surface of the Brillouin zone that have two-dimensional representations only. In order to see
how this is done let us consider as an example the orthorhombic space group 61

(
D15

2h, Pbca
)
.

This group has two maximal symmetry Wyckoff positions [12]:

a = (000) b =
(

00
c

2

)
. (2)

For a and b the symmetry groups Ga and Gb contain the unit element E and the inversion I, and
are isomorphic to the point group Ci [13]. There are four (two from each Wyckoff position)
four-branch elementary band representations ( �w, ρ) ( �w = a or b and ρ = 1, 2) for the space
group Pbca according to equation (1), since |P | = 8, |Gw| = |Ci| = 2 and each of the
two irreducible representations of Ci are one dimensional (dim D( �w,ρ) = 1). The elementary
band representation (a, 1) induced from the trivial representation of Ci contains the four even
representations of the point group D2h (see table 1, irreps 1–4) at the symmetry centre � in the
Brillouin zone. On the surface of the Brillouin zone there are usually a number of symmetry
points which have two-dimensional representations only. In table 2 we list those points for
the orthorhombic space groups that are continuously connected by symmetry points inside the
Brillouin zone (column 2 in table 2) with non-trivial symmetry elements (column 3 in table 2).
It is important to point out that this possibility to follow continuously some symmetry elements
along lines from the centre � of the Brillouin zone to the surface will be used below as the
main tool in establishing the rules of branch crossings. For the example under consideration
(group D15

2h), we give in table 3 the characters of the two-dimensional representations at the
symmetry points on the surface of the Brillouin zone X,Y,Z A,D and H at which there
are only two-dimensional irreps (the characters are taken from [13], pp 101, 102). In the
upper row of table 3 the point group elements of Pbca are given (in general, they appear with
partial translations [12, 13]). In the first column of table 3 we list the symmetry points on the
surface of the Brillouin zone (see table 2 for their coordinates), which have two-dimensional
irreps only for the space group D15

2h. The subscripts 1 and 2 number the different irreducible
representations. In the last column of table 3 we list the symmetry points in the Brillouin
zone which continuously connect the centre � with the corresponding symmetry points on the
surface of the Brillouin zone in the first column. The underlined characters in table 3 identify
the symmetry elements of the symmetry points in the last column (see also table 2). We are
now ready to discuss crossings of the branches of the elementary energy band that correspond
to the elementary band representation (a, 1) of the orthorhombic group Pbca. As was pointed
out above, the band representation (a, 1) contains the irreps 1–4 of D2h at the �-point
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Table 2. Symmetry points and symmetry elements on the surface and inside the Brillouin zone for
the orthorhombic space groups. For the latter their symmetry elements are given in column 3. For
notations see caption for table 1.

Points on the Symmetry for points
surface of the BZ Points inside the BZ inside the BZ

Z(00 π
c
) (00kz) Uzσxσy

X( π
a

00) (kx00) Uxσyσ z

Y (0 π
b

0) (0ky0) Uyσxσ z

U( π
a

0 π
c
) (kx0kz) σ y

T (0 π
b

π
c
) (0kykz) σ x

S( π
a

π
b

0) (kxky0) σ z

A(kx0 π
c
) (kx0kz) σ y

C(kx
π
b

0) (kxky0) σ z

B(0ky
π
c
) (0kykz) σ x

D( π
a
ky0) (kxky0) σ z

G( π
a

0kz) (kx0kz) σ y

H(0 π
b
kz) (0kykz) σ x

Table 3. Symmetry points on the surface of the Brillouin zone (BZ) and the characters of
the corresponding irreps of the space group Pbca (taken from [13]). The underlined characters
correspond to symmetry elements of the points inside the BZ.

Symmetry elements and characters
Points on the Points inside
surface of the BZ E Ux Uy Uz I σx σy σ z the BZ

X1,2 2 0 0 0 0 0 ±2 0 (kx00)

Y1,2 2 0 0 0 0 0 0 ±2 (0ky0)

Z1,2 2 0 0 0 0 ±2 0 0 (00kz)

A 2 0 0 0 (kx0kz)

D 2 0 0 0 (kxky0)

H 2 0 0 0 (0kykz)

(see table 1). In which order these representations arrange according to energy cannot be
determined from symmetry considerations alone and this order depends on the specific form
of the periodic potential of the crystal. However, no matter which order is chosen for these
four irreps, it is shown in what follows that the branches in the (a, 1) energy band have to
cross. This is seen from the fact (see table 3) that in the �–X direction (including X ) the
character χ(σy) = ±2, while in the �–A direction including A, χ(σy) = 0. This leads to
unavoidable crossing in either the X- or A-direction. Indeed, by pairing the irreps 1–4 as in
figure 1 (1 & 3 and 2 & 4) in order to avoid crossing in the X-direction for χ(σy) = ±2, we
necessarily have crossing in the A-direction for χ(σy) = 0 (in this direction there are two
choices of pairings with each of them leading to crossing (see figures 2(a) and (b)). This leads
us to the first rule of crossings:

Rule 1. If there exists a symmetry element which has different characters in two different
directions of the Brillouin zone, then in one of these two directions there is necessarily a
crossing. Rule 1 needs no proof because it is clear that different characters for the same
element requires a different pairing of the irreps which has to lead to a crossing in one of these
directions.
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Figure 1. Schematic energy graphs for the band representation (a, 1) of the space group 61 in the
direction X in the BZ. The numbers on the left are for the irreps of D2h, and on the right for the
irreps of GX , the symmetry group of the symmetry point X.

Figure 2. (a) and (b) are schematic energy graphs as in figure 1, but for the A-direction. (a) and
(b) give different allowed pairings or irreps.

Figure 3. Schematic energy graphs as in figure 1 but for the Y-direction.

Before discussing rule 1, we turn to the derivation of an additional crossing rule. In the
above analysed example for the Pbca space group we had χ(σy) = ±2 for the X-direction.
Table 3 shows that in the Y-direction the character of σ z is χ(σ z) = ±2. Such a character
requires the pairing of 1 & 4 and 2 & 3. Comparing this with figure 1 for the X-direction,
the conclusion is that there is unavoidable crossing in one of the directions X and Y. Having
chosen the order of the irreps as in figure 1 to have χ(σy) = ±2 in the X-direction, we shall
necessarily get a crossing in the Y-direction (figure 3).

Consider now the directions A, D and H in table 3 and notice that in the A-direction,
χ(σy) = 0, in the D-direction χ(σ z) = 0 and in the H-direction χ(σx) = 0. From table 1 it is
seen that no pairing of the irreps 1–4 exists that would lead to the vanishing of the characters
for all the three elements σx, σ y, σ z. This means that crossing is unavoidable in one of the
directions A, D and H.1 A possible crossing situation is shown in figure 4, where we have

1 An example of such a crossing was already encountered in the space group P 212121 [8].
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Figure 4. (a), (b) and (c) are schematic energy graphs as in figure 1, but for the directions A, D and
H, respectively. The order of the irreps of D2h was chosen in such a way that there is no crossing
in A- and D-directions, but then there is a necessary crossing in the H-direction.

chosen the ordering of the irreps 1–4 of D2h at � in such a way as to avoid crossing in the
A- and D-directions, but then there is necessarily a crossing in the H-direction (if we had
chosen the ordering of the irreps as in figure 1, then there would be no crossing in the D-
and H-directions, and the crossing would necessarily appear in the A-direction). We can now
formulate rule 2 for branch crossing.

Rule 2. It consists of two parts 2a and 2b. (2a) If there exist two symmetry elements which
have characters ±2 in two different directions in the Brillouin zone, then in one of these
directions there is necessarily a crossing. (2b) If there exist three symmetry elements which
have characters zero in two or three different directions in the Brillouin zone, then in one
of these directions there is necessarily a crossing. The proof of rule 2 is as follows. The
induction of four-branch band representations for orthorhombic space groups is determined
by four elements of the following point groups (in view of the fact that the possible symmetry
groups Gw for such four-branch bands are C1, Ci , C2 and Cs) [12, 13]:

D2, C2v and C2h. (3)

These are Abelian point groups having only one-dimensional irreps at the �-point . It is easy
to check that any pairing of their irreps gives a character ±2 for one of the non-trivial elements
(non-unit elements) and 0 for the other two. This means that for a fixed pairing we can have
no two elements with character ±2 and no three elements with 0-character. This proves rule 2.

The following remark should be made concerning the above rules 1 and 2. When dealing
with induced representations the induction process imposes connections between characters
of different elements. The most often encountered of such connections in the application
of rules 1 and 2 is for the induction from the symmetry group Ci , where the character of a
rotation U by π is closely connected to that of a reflection σ through a plane perpendicular to
the rotation axes. This is so because σ = IU where I is the inversion. See another remark
about these connections later.

In table 4 we give a list of orthorhombic space groups whose four-branch energy bands
have topologically unavoidable branch crossings in one or more directions. The information in
this table in the first 4 columns is taken from [12]. Column 5 shows the rule number according
to which the branch crossing materializes,and in the last column we give the possible directions
of the crossings. For rules 1 and 2a they take place in one of two such directions, while for
rule 2b in one of two or three directions. For each direction the symmetry element is given
which persists for the whole line from the centre � to the surface of the Brillouin zone. With
the information in table 4, the character table 1 for D2h, and the characters for the irreps of
the corresponding orthorhombic space groups [13], it is easy to draw branch crossing graphs
similar to those given in figures 1–4 for group 61.



Topologically unavoidable points and lines of crossings in the band structure of solids 6515

Table 4. Topologically unavoidable crossing directions for four-branch energy bands of the
orthorhombic system. The first four columns are taken from [12]. The information in the last
column is explained in the text.

Space Space group WYCKOFF Isotropy Symmetry elements and

group symbol position group Rule directions in Brillouin zone

19 P212121 D4
2 a(xyz) E 2b Ux(X),Uy(Y ), Uz(Z)

29 Pca21 C5
2v a(xyz) E 1 σ y(Z), σ y(X)

2b Uz(Z), σ x(Z), σ y(X)

33 Pna21, C9
2v a(xyz) E 1 σ y(Z), σ y(X)

2b Uz(Z), σ x(Z), σ y(X)

48 Pnnn D2
2h e( a

2
b
2

c
2 ), f (000) Ci 2a Ux(X),Uy(Y )

2b σ y(A), σ x(B), σ z(C)

50 Pban D4
2h e(000), f (00 c

2 ) Ci 2a Ux(X),Uy(Y )

2b σ x(U), σ y(T ), σ z(C)

52 Pnna D6
2h a(000), b(00 c

2 ) Ci 1 σ z(Y ), σ z(D)

2a Ux(X),Uz(Z)

2b σ x(Z), σ y(Z), σ z(X)

c( a
4 0z) Cz

2 1 σ z(Y ), σ z(D)

d(x b
4

c
4 ) Cx

2 1 σ z(Y ), σ z(D)

53 Pmna D7
2h g( a

4 y c
4 ) C

y

2 2a Ux(X), σ x(Z)

54 Pcca D8
2h a(000), b(0 b

2 0) Ci 1 σ y(X), σ y(A)

2a Uz(Z), σ y(X)

2b σ z(X), σ y(Z), σ x(B)

c(0y c
4 ) C

y

2 1 σ y(X), σ y(A)

2a Uz(Z), σ y(X)

d( a
4 0z), e( a

4
b
2 z) Cz

2 1 σ y(X), σ y(A)

56 Pccn D10
2h a(000), b(00 c

2 ) Ci 1 σ y(X), σ y(A)

2a σ x(Y ), σ y(X)

2b σ x(B),σ y(A), σ z(C)

c( a
4

b
4 z), d( a

y
3b
4 z) Cz

2 1 σ y(X), σ y(A)

57 Pbcm D11
2h a(000), b( a

2 00) Ci 1 σ x(Z), σ x(H)

2a σ z(Y ), σ x(Z)

c(x b
4 0) Cx

2 1 σ x(Z), σ x(H)

2a σ z(Y ), σ x(Z)

d(xy c
4 ) Cz

s 1 σ x(Z), σ x(H)

59 Pmmn D13
2h c( a

4
b
4 0), d( a

4
b
4

c
2 ) Ci 2a σ y(U), σ x(T )

60 Pbcn D14
2h a(000), b(0 b

2 0) Ci 1 σ y(X), σ y(A)

2a Uy(Y), σ x(Z)

2b σ z(D), σ x(H), σ y(A)

c(0y c
4 ) C

y

2 1 σ y(X), σ y(A)

2a σ y(X), σ x(Z)

61 Pbca D15
2h a(000), (00 c

2 ) Ci 1 σ x(Z), σ x(H)

2a σ x(Z), σ z(Y )

2b σ x(H), σ z(D), σ y(A)

62 Phma D16
2h a(000), b(00 c

2 ) Ci 1 σ z(Y ), σ z(X)

2a σ y(X), σ z(Y )

2b Ux(X),Uy(Y ), Uz(Z)

c(x b
4 z) C

y
s 1 σ x(Y ), σ z(X)

2b Ux(X),Uy(Y ), Uz(Z)

64 Cmca D18
2h e( a

4 y c
4 ) C

y

2 1 σ x(Z), σ z(S) = σ x(S)

68 Ccca D22
2h c( a

4 0 c
4 ), d(0 b

4
c
4 ) Ci 1 Uz(Z), σ z(S) = Uz(S)

2b σ y(A), σ x(B), σ z(S)

70 Fddd D24
2h c(000), d( a

2
b
2

c
2 ) Ci 2a Ux(X),Uy(Y )

2b σ x(X), σ z(X), σ x(B)

73 Ibca D27
2h a(000), b( a

4
b
4

c
4 ) Ci 2b σ x(T ), σ y(U), σ z(S)
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We would like to make a number of remarks about table 4 which contains the main results
of this paper. First, it contains only a part of the crossing directions for each given group
and that a full listing will be given elsewhere. For example, for group 48, one can check,
by using the tables on p 81 of [13], that for rule 2a there will also be crossings in one of
the two directions Ux(X) or Uz(Z) and Uy(Y ) or Uz(Z). Second, we would like to point
out that there are very many materials that crystallize with orthorhombic symmetry and that,
according to [14], there are about 2000 different crystals belonging to the 18 space groups
in table 4, which makes the results of branch crossings of much practical interest. Third, as
was mentioned above, because of the induction process, there are connections between some
characters of different elements (see space group 64 and line 1 for group 68). And finally,
one should keep in mind that some of the branch crossings, as mentioned in the introduction,
can take place on lines in the Brillouin zone. Consider, for example, figure 4 for group 61.
According to figure 4(c) there is a crossing in the �–H direction between branches 2 and 3,
which means that ε2(kykz) = ε3(kykz). From here a line of crossing follows in the kykz-plane.

In conclusion, we have established rules of branch crossings in four-branch bands in
crystals with orthorhombic symmetry and have applied these rules for discovering a great
variety of materials in which branch crossing is a topologically unavoidable feature.
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